Symmetric triality relations and structurable algebras
نویسندگان
چکیده
منابع مشابه
Structurable equivalence relations
For a class K of countable relational structures, a countable Borel equivalence relation E is said to be K-structurable if there is a Borel way to put a structure in K on each E-equivalence class. We study in this paper the global structure of the classes of K-structurable equivalence relations for various K. We show that K-structurability interacts well with several kinds of Borel homomorphism...
متن کاملHopf Algebras with Triality
In this paper we revisit and extend the constructions of Glauberman and Doro on groups with triality and Moufang loops to Hopf algebras. We prove that the universal enveloping algebra of any Lie algebra with triality is a Hopf algebra with triality. This allows us to give a new construction of the universal enveloping algebras of Malcev algebras. Our work relies on the approach of Grishkov and ...
متن کاملLie Algebras with S 4 -action and Structurable Algebras
Abstract. The normal symmetric triality algebras (STA’s) and the normal Lie related triple algebras (LRTA’s) have been recently introduced by the second author, in connection with the principle of triality. It turns out that the unital normal LRTA’s are precisely the structurable algebras extensively studied by Allison. It will be shown that the normal STA’s (respectively LRTA’s) are the algebr...
متن کاملDegeneracy of Triality-symmetric Morphisms
We define a new symmetry for morphisms of vector bundles, called triality symmetry, and compute Chern class formulas for the degeneracy loci of such morphisms. In an appendix, we show how to canonically associate an octonion algebra bundle to any rank 2 vector bundle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2005
ISSN: 0024-3795
DOI: 10.1016/j.laa.2004.09.001